
TCP L IBRARY FOR CAMERA AND PC

User's Guide

22 March 2005

TCP library for camera and PC User's Guide

Thank you for your interest in our TCP library for TI cameras and PC. In this manual you will find out
how to use it.

Before going on reading the manual, we kindly ask you to read the following
DISCLAIMER
THIS DOCUMENTATION IS PROVIDED FOR REFERENCE PURPOSES ONLY. WHILE EFFORTS
WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS DOCUMENTATION, THIS DOCUMENTATION IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY WHATSOEVER AND TO THE MAXIMUM EXTENT PERMITTED,
ATTO-SYSTEMS LTD. DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND
FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SAME. ATTO-SYSTEMS LTD.
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES, ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS DOCUMENTATION OR ANY OTHER
DOCUMENTATION. NOTWITHSTANDING ANYTHING TO THE CONTRARY, NOTHING
CONTAINED IN THIS DOCUMENTATION OR ANY OTHER DOCUMENTATION IS INTENDED TO,
NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS
FROM ATTO-SYSTEMS LTD. (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS
AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT GOVERNING THE USE OF
THIS SOFTWARE.
THE DESCRIBED SOFTWARE IS PROVIDED 'AS IS', WITHOUT ANY WARRANTY EXPRESSED OR IMPLIED.
NO GUARANTY IS GIVEN THAT THE SOFTWARE IS SUITABLE FOR ANY GIVEN PURPOSE.

COPYRIGHT
Under the copyright laws, neither the documentation nor the software may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior
written consent of atto-Systems Ltd , except in the manner described in the documentation or the applicable
licensing agreement governing the use of the software. All rights are reserved. Do not reverse-engineer. Do not
modify or distribute without all of the documentation.
© Copyright 2004-2005 atto-Systems Ltd.
11, Midzhur Str.
Sofia – 1000,
Bulgaria

All rights reserved.

TRADEMARKS
All trademarks and copyrights mentioned within the documentation are respected. They are the property of their
respective owners.

atto-Systems Ltd. 22 Mar 2005 Page 2 of 39

TCP library for camera and PC User's Guide

CONVENTIONS USED IN THIS MANUAL

INFORMATION. This sign marks section in the manual, which is for information only.

ATTENTION. This sign marks section of the manual, which is particularly important for
the general understanding of the document. Please, make sure to read this section
before proceeding with reading the manual.

TIPS & TRICKS. This sign marks a Tips & Tricks section. Here you can find some
practical advises on using the system or get a more detailed explanation of some
features. Reading this section may help you in solving a particular problem or give you
some ideas but is not vital for understanding the document.

PREMISE. This sign marks a section, which requires you to do something before
proceeding with reading the manual. Usually this is a demo program, you have to run
or something similar.

File Menu item

File >
Open Sub-menu item or dialog control

“1.1 About” Section reference. If the section is within the current manual no manual name is
specified. When the section is within external manual the name of the respective
manual is also included.

Ctrl+E Hot-key combination. The first part of the combination specifies which system key to
use. Possible values are: Ctrl, Alt, Shift. The second part specifies the normal key to
be used in the combination. The plus sign means that you should press these keys
simultaneously.

atto-Systems Ltd. 22 Mar 2005 Page 3 of 39

TCP library for camera and PC User's Guide

CONTENTS
1. INTRODUCTION... 6

1.1. WHY NEW LIBRARY... 6
1.2. SIMPLE EXAMPLES .. 7

1.2.1. Server example.. 7
1.2.2. Client example... 9

2. RESOURCES .. 11
2.1. SOCKETS ... 11
2.2. SOCKET OPTIONS... 11
2.3. CONNECTION MODES... 11
2.4. MULTIPLE DATA SOCKETS... 12
2.5. MEMORY REQUIREMENTS ... 12

3. USAGE... 13
3.1. HEADER FILES ... 13
3.2. INITIALIZATION ... 13
3.3. CONNECTING SERVER SOCKETS... 14
3.4. CONNECTING CLIENT SOCKETS.. 15
3.5. USING MULTIPLE SOCKETS .. 16
3.6. TRANSFERRING DATA.. 16

3.6.1. Basic data transfer functions .. 16
3.6.2. VIMOS I/O functions... 17

3.7. COPY PROTECTION .. 17
3.8. COMPILING AND LINKING PROGRAMS WITH TCP LIBRARY.. 18

3.8.1. Compiling and linking camera programs ... 18
3.8.2. Compiling and linking PC programs .. 18

4. EXAMPLES .. 20
4.1. BASIC LIBRARY EXAMPLE – CLIENT AND SERVER.. 20
4.2. BASIC LIBRARY EXAMPLE – CLIENT AND SERVER WITH MULTIPLE SOCKETS ... 20
4.3. VIMOS LIBRARY EXAMPLE .. 21

5. BASIC LIBRARY FUNCTION REFERENCE ... 23
TCP_INIT (INITIALIZE TCP LIBRARY) ... 23
TCP_CLOSE (CLOSE TCP LIBRARY).. 23
TCP_DATASOCKRESET (RESET SOCKETS) .. 23
TCP_LISTEN (START LISTENING FOR CLIENT REQUESTS)... 24
TCP_ACCEPTCONNECTION (ACCEPT CONNECTION REQUESTS)... 24
TCP_GETCONNECTIONSTATE (GET SOCKET CONNECTION STATE).. 25
TCP_CONNECT (CONNECT CLIENT SOCKET).. 25
TCP_DISCONNECT (DISCONNECT SOCKET) ... 26
TCP_SENDBYTE (SEND BYTE) .. 26
TCP_RECVBYTE (RECEIVE BYTE) ... 26
TCP_WAITBYTE (WAIT FOR BYTE)... 27
TCP_SENDBLOCK (SEND BLOCK) ... 27
TCP_RECVBLOCK (RECEIVE BLOCK) .. 28
TCP_SENDCMD (SEND COMMAND)... 28
TCP_READECHO (READ CAMERA ECHO) .. 28
GET_TIME (GET SYSTEM TIME) .. 29

atto-Systems Ltd. 22 Mar 2005 Page 4 of 39

TCP library for camera and PC User's Guide

6. VIMOS LIBRARY FUNCTION REFERENCE .. 30
TCP_SENDPTLIST (SEND POINT-LIST) ... 30
TCP_RECVPTLIST (RECEIVE POINT-LIST).. 30
TCP_SENDIMAGE (SEND IMAGE) .. 31
TCP_RECVIMAGE (RECEIVE IMAGE) ... 32
TCP_SENDRESULT (SEND RESULT) ... 33
TCP_RECVRESULT (RECEIVE RESULT).. 34
TCP_SENDSTRING (SEND STRING) .. 35
TCP_RECVSTRING (RECEIVE STRING)... 35
TCP_SENDBINARY (SEND BINARY)... 36
TCP_RECVBINARY (RECEIVE BINARY) ... 36

7. ERROR CODES ... 38

atto-Systems Ltd. 22 Mar 2005 Page 5 of 39

TCP library for camera and PC User's Guide

1. Introduction
The TCP library is a set of I/O functions for Ethernet cameras VC20xxE and PC. The VC20xxE
cameras are manufactured by Vision Components GmbH, Germany. They are based on a Texas
Instruments (TI) processor and have an Ethernet port for LAN connection.

The library functions are divided in two groups:
• Basic TCP library. Basic TCP/IP functions for server/client connection and data transfer

between remote peers. Here are functions for library initialization, connection and
disconnection. The basic library contains byte and block oriented functions for data transfer.

• VIMOS TCP library. High-level I/O functions for communication with VIMOS I/O tools. VIMOS
is a machine vision system created by atto-Systems Ltd, which runs on VC20xxE cameras.

The TCP library is available on two platforms – PC and VC20xxE camera. Using the library you may
create programs for data transfer between PC/camera and a remote TCP/IP server or client.

ATTENTION. Unauthorized usage of the library is disabled on the camera. You need
a registration key, which is received by the program vendor.

1.1. Why a new library?
Both the PC and the camera have standard low-level libraries, which support TCP/IP communication.
On the PC you can find such functions in Visual C/C++. On camera you can use the TCP/IP functions
supplied by Vision Components.

Our library is based on the respective low-level libraries, but it simplifies and facilitates the creation of
communication software. It frees your from the necessity to read dozens of pages with function
descriptions and numerous options and to guess which option(s) should be used in your code. We
have already done it instead of you.

Using the library you are able to:
• Create fully portable I/O code, which is identical on camera and PC with minor exceptions

(different general-purpose headers).
• Easily create, connect, disconnect and close sockets (abstractions used to identify TCP/IP

end-points).
• Use reliable stream sockets in two connection modes: server and client.
• Use simultaneously multiple data sockets and one listen socket.
• Use default socket options (send/receive buffer size, connection timeouts, etc.), which usually

are not enabled, or may have unsuitable default values.
• Use stable and reliable byte and block transfer functions. These functions check the socket

state and its readiness before each send/receive operation. They handle properly non-fatal
(busy) errors, which should not abort the transfer. All “receive” function support timeouts.

• Keep track of connected remote peer parameters.

ATTENTION. Socket disconnection is done in hard (abort) mode.

In addition, the library provides functions for communication with VIMOS I/O tools in TCP/IP mode.
You can create stand-alone programs on the PC or the camera, which interchange data with VIMOS.
Usually your stand-alone program and VIMOS are running on opposite platforms – one on the PC and
the other on the camera, but it is possible to make connection between two cameras or two PC’s.

atto-Systems Ltd. 22 Mar 2005 Page 6 of 39

TCP library for camera and PC User's Guide

Initialization and connection is common for the basic library and the VIMOS library (see the examples
below). The VIMOS library contains data transfer functions, which work with more complex data
structures. You can’t use the VIMOS library isolated from the basic library; therefore both libraries are
contained in one library file:

• TCP_PC.LIB – PC library (basic + VIMOS);
• TCP_CAM.LIB – camera library (basic + VIMOS).

1.2. Simple examples
Using the library is not a complex task. You work in C (C files). Your program should have the
following general structure:

• Declare sockets.
• Initialize the library by TCP_Init() before any other I/O code.
• Reset sockets.
• Connect socket(s) in server mode (see the example SERVER.C) or in client mode (see the

example CLIENT.C).
• Perform I/O transfer between connected sockets after successful connection.
• Disconnect (close) sockets.
• Close the library by TCP_Close().

The two examples below are fully functional programs, which transfer data between PC and camera.
The examples use functions from the basic library. The server program is intended to run on camera
and the client program - on PC as a console application. You can run the ready executable modules
supplied with the library. Load your registration key file TCPKEY.MSF to the camera flash (the FD:
drive). The registration file is not needed for the ready MSF demo files. Load SERVER.MSF to camera
flash and start server from a TCP/IP terminal. The server program will wait 9 seconds for connection.
Start immediately client.exe in a command prompt window. You should receive a data dump
0,1,…,7 and return code RC=0.

You may interchange the platforms by recompilation of the source code (see “3.8. Compiling and
linking programs with TCP library”). Remember that you should set a PC IP address in the client
example where currently the camera’s IP address is used.

1.2.1. Server example

The server example SERVER.C waits for a connection request from a remote client on port 2000.
After successful connection the program receives a block of 8 bytes and sends the block back to the
client. Note that in a server program you don’t need to specify IP address and port of a connecting
remote peer.
/*--*/
/*
* File: server.c
*
* Demo program for TCP server. The program waits for connection request
* from a remote client on port 2000. After successful connection the
* program receives a block of 8 bytes and sends back the block to the
* client.
*
* _TI_CAMERA defined : Compile for camera
* _TI_CAMERA not defined : Compile for PC
*/
/*--*/
#ifdef _TI_CAMERA
 #include <vcrt.h>
#else
 #include <conio.h>

atto-Systems Ltd. 22 Mar 2005 Page 7 of 39

TCP library for camera and PC User's Guide

#endif
#include "tcp_lib.h"

#define CONN_TIME_OUT 9000 /* connection wait time in ms */
#define RECV_TIME_OUT 500 /* receive timeout in ms */
#define BUF_SIZE 8 /* I/O buffer size */
#define SERVER_PORT 2000 /* server listen port */

int main()
{
 int rc;
 int iret;
 unsigned long time;
 unsigned char buf[BUF_SIZE]; /* I/O buffer */
 TCP_SOCK ListenSock; /* listen socket */
 TCP_SOCK DataSock; /* data socket */

/*............. Init TCP */
 rc = TCP_Init();
 if(rc != TCP_OK)
 {
 printf("TCP_Init error = %d\n",rc);
 return rc;
 }

/*............. Reset sockets */
 TCP_DataSockReset(&ListenSock,1);
 TCP_DataSockReset(&DataSock,1);

/*............. Create listen socket and start listening on port 2000 */
 rc = TCP_Listen(&ListenSock,SERVER_PORT);
 if(rc != TCP_OK) goto done;

/*............. Wait for connection with a remote client */
 time = get_time();
 for(;;)
 {
 rc = TCP_AcceptConnection(&ListenSock,&DataSock,1);
 if(rc != TCP_OK) goto done;

 if(TCP_GetConnectionState(&DataSock)) break; /* connection OK */
 if(get_time() - time >= CONN_TIME_OUT)
 {
 rc = TCP_NO_CONNECTION_ERROR;
 goto done;
 }
 } /* for(;;) */

/*............. Receive block */
 iret = TCP_RecvBlock(&DataSock,buf,BUF_SIZE,RECV_TIME_OUT);
 if(iret != BUF_SIZE)
 {
 printf("TCP_RecvBlock error: iret=%d buf_size=%d\n",iret,BUF_SIZE);
 rc = TCP_RECV_BLOCK_ERROR;
 goto done;
 }

/*............. Send block */
 iret = TCP_SendBlock(&DataSock,buf,BUF_SIZE);
 if(iret != BUF_SIZE)
 {

atto-Systems Ltd. 22 Mar 2005 Page 8 of 39

TCP library for camera and PC User's Guide

 printf("TCP_SendBlock error: iret=%d buf_size=%d\n",iret,BUF_SIZE);
 rc = TCP_SEND_BLOCK_ERROR;
 goto done;
 }

/*............. Exit */
done:
 time = get_time();
 while(get_time() - time < 300); /* wait before disconnect */

 TCP_Disconnect(&DataSock);
 TCP_Disconnect(&ListenSock);
 TCP_Close();

 printf("RC = %d\n",rc);
 return rc;
}

1.2.2. Client example

The client example CLIENT.C connects to a server, specified by IP address and port. The program
sends a block of 8 bytes to the server, receives back a block of 8 bytes and dumps the received data.
Note that in a client program you have to specify IP address and port of a server you want to connect
to.
/*--*/
/*
* File: client.c
*
* Demo program for TCP client. The program attempts to connect to a server,
* specified by IP address and port. After successful connection the
* program sends a block of 8 bytes to the server and receives back a block
* of 8 bytes.
*
* Note: The program uses the default IP address of the camera 192.168.0.65.
* Change if necessary !
*
* _TI_CAMERA defined : Compile for camera
* _TI_CAMERA not defined : Compile for PC
*/
/*--*/

#ifdef _TI_CAMERA
 #include <vcrt.h>
#else
 #include <stdio.h>
#endif
#include "tcp_lib.h"

#define CONN_TIME_OUT 2000 /* connection wait time in ms */
#define RECV_TIME_OUT 500 /* receive timeout in ms */
#define BUF_SIZE 8 /* I/O buffer size */
#define SERVER_IP_ADDR "192.168.0.65" /* server IP address */
#define SERVER_PORT 2000 /* server listen port */

int main(int argc, char *argv[])
{
 int rc;
 int iret;
 unsigned char buf[BUF_SIZE] = { 0,1,2,3,4,5,6,7 }; /* send buffer */
 unsigned char buf1[BUF_SIZE] = { 0,0,0,0,0,0,0,0 }; /* recv buffer */

atto-Systems Ltd. 22 Mar 2005 Page 9 of 39

TCP library for camera and PC User's Guide

 char ip_str[32] = SERVER_IP_ADDR;

 TCP_SOCK DataSock; /* data socket */

/*............. Get new IP address */
 if(argc >= 2)
 {
 strcpy(ip_str,argv[1]); // save IP address
 }

/*............. Init TCP */
 rc = TCP_Init();
 if(rc != TCP_OK)
 {
 printf("TCP_Init error = %d\n",rc);
 return rc;
 }

/*............. Reset socket(s) */
 TCP_DataSockReset(&DataSock,1);

/*............. Connect to a remote server */
 rc = TCP_Connect(&DataSock,ip_str,SERVER_PORT,CONN_TIME_OUT);
 if(rc != TCP_OK) goto done;

/*............. Send block */
 iret = TCP_SendBlock(&DataSock,buf,BUF_SIZE);
 if(iret != BUF_SIZE)
 {
 printf("TCP_SendBlock error: iret=%d buf_size=%d\n",iret,BUF_SIZE);
 rc = TCP_SEND_BLOCK_ERROR;
 goto done;
 }

/*............. Receive block */
 iret = TCP_RecvBlock(&DataSock,buf1,BUF_SIZE,RECV_TIME_OUT);
 if(iret != BUF_SIZE)
 {
 printf("TCP_RecvBlock error: iret=%d buf_size=%d\n",iret,BUF_SIZE);
 rc = TCP_RECV_BLOCK_ERROR;
 goto done;
 }
 else
 {
 printf("recv: %d %d %d %d %d %d %d %d\n",
 buf1[0],buf1[1],buf1[2],buf1[3],
 buf1[4],buf1[5],buf1[6],buf1[7]);
 }

/*............. Exit */
done:
 TCP_Disconnect(&DataSock);
 TCP_Close();

 printf("RC = %d\n",rc);
 return rc;
}

atto-Systems Ltd. 22 Mar 2005 Page 10 of 39

TCP library for camera and PC User's Guide

2. Resources
This chapter presents in details the library resources.

2.1. Sockets
The library uses stream sockets. Stream sockets provide reliable peer to peer transfer by the TCP
protocol. When you receive an OK transfer code, it is guaranteed that all sent data is received by the
remote peer in the same byte order. Stream sockets are byte oriented (as indicated by the name).
Data blocks are sent and received as sequences of bytes. For example you can send two blocks of 50
bytes and the receiver can read one block of 100 bytes or 4 blocks of 25 bytes..

The socket type TCP_SOCK used in our library represents an upgrade (extension) of the low-level I/O
socket (look at TCP_LIB.H). It is a structure, which includes the traditional socket – the socket
member, and contains some other members:

• Remote peer parameters, which are set when a connection is done successfully.
• The flag connection_exists shows current connection state – 0=off, 1=on.
• Other parameters, needed by the high-level VIMOS I/O tools.

You can set custom-defined socket options using the socket member using the respective (PC or
camera) low-level TCP/IP library. Note that some socket options can’t be changed at any time.

2.2. Socket options
When creating sockets, the functions TCP_Listen and TCP_Connect set some default socket
options. Note that options of the listen socket become attributes of the server’s data socket when a
client’s connection request is accepted by TCP_AcceptConnection.

Socket options for PC library:
• Hard (abort) socket disconnection – all I/O is stopped immediately.
• Size of receive buffer = 1 MByte.
• Re-use addresses before bind.

Socket options for camera library:
• Hard (abort) socket disconnection.
• Size of send buffer = size of sensor image (getvar(VPITCH)*getvar(VWIDTH) + 256).

This option enables maximum transfer speed when sending images from camera to PC.
• Size of receive buffer = 80000 bytes.

Internally the library utilizes low-level functions send and recv in “no wait” mode, i.e. they send or
receive the maximum possible bytes and return control immediately. High-level functions like
TCP_SendBlock and TCP_RecvBlock wait for the end of the transfer (the receive function waits with
timeout).

2.3. Connection modes
The library supports connection in two modes – server or client. The server mode requires creation of
a listen socket by TCP_Listen, which is used to start listening for connection requests from remote
client(s). TCP_AcceptConnection accepts requests and creates respective data sockets for each
successful connection. The client mode is more simple – TCP_Connect makes connection with
remote server and creates a data socket, further used in the send/receive operations.

atto-Systems Ltd. 22 Mar 2005 Page 11 of 39

TCP library for camera and PC User's Guide

Once you have made a connection, you can use equivalent code to transfer data between the server
and the client. Remember to start the server first.

2.4. Multiple data sockets
You can use several data sockets for data transfer. Each socket should be created and connected in
one of the two modes – client or server. Each connected socked can be passed as argument to the
data transfer functions. It is possible (but not recommended) to use simultaneously client and server
sockets in one program.

2.5. Memory requirements
When creating sockets, the library functions allocate memory for send/receive buffers (see “2.2.
Socket options”). Keep in mind that creating of too many sockets can cause memory problems
especially on the cameras with 16 Mbytes DRAM. The memory is released when the socket is
disconnected by TCP_Disconnect.

ATTENTION. Don’t forget to disconnect all created sockets when you finish an I/O
transfer.

atto-Systems Ltd. 22 Mar 2005 Page 12 of 39

TCP library for camera and PC User's Guide

3. Usage
This chapter describes how to use the TCP library. You can create programs with server or client
sockets. A pair of a client and a server socket can exchange data. You can’t make connection
between two client or two server sockets. The server and the client programs usually work on different
platforms – PC’s and/or cameras. You can make connection between PC and camera, PC and PC or
camera and camera.

To realize a successful connection, the server and the client should have matching parameters. If the
server platform has IP address server_ip_addr and listens on port server_listen_port, then
the client should make connection by:
 TCP_Connect(&DataSock, server_ip_addr, server_listen_port, time_out);

If you are creating a program for communication with VIMOS, sockets in your program and VIMOS I/O
tools should be configured respectively:

• Server socket – connects to VIMOS I/O tools with a client device.
• Client socket – connects to VIMOS I/O tools with a server device.

ATTENTION. The recommended execution sequence is to start the server program
first.

3.1. Header files
The header file TCP_LIB.H contains all definitions and prototypes, necessary to call functions from the
basic library. Here are the prototypes of all initialization and connection functions, which are needed
when you use also the VIMOS library. Include the header file in your C/CPP source files.

The header file TCP_IO.H contains definitions and prototypes, necessary to call functions from the
VIMOS library. Include this file in your code when if you are creating a program for communication with
VIMOS. When working with VIMOS library, you need prototypes of initialization and connection
functions from the basic library, which are contained in TCP_LIB.H, so TCP_LIB.H is included in
TCP_IO.H.

ATTENTION. Do not use macros and type definitions from the header files, which
are not documented in this manual. They are for internal use only and may be
changed without a notice

3.2. Initialization
You should initialize the library by TCP_Init before calling any other I/O function. Reset all used
sockets immediately after TCP_Init. Before exit (or when I/O is no longer needed), disconnect all
sockets and close the library by TCP_Close. This initialization is obligatory for both the basic library
and the VIMOS library. In general, a main I/O function should have the following structure (here you
may use several data sockets):

#include "tcp_lib.h"
#include "tcp_io.h" /* optional – for VIMOS library only */

void main()
{
 int rc;
 TCP_SOCK ListenSock; /* listen socket (server mode only) */

atto-Systems Ltd. 22 Mar 2005 Page 13 of 39

TCP library for camera and PC User's Guide

 TCP_SOCK DataSock1; /* data socket 1 */
 TCP_SOCK DataSock2; /* data socket 2 */

/* Note: You can use a data socket buffer: TCP_SOCK SockBuf[N]; */

/* Initialize library */
 rc = TCP_init();
 if(rc != TCP_OK)
 {
 printf("TCP init error = %d\n", rc):
 return;
 }

/* Reset sockets */
 TCP_DataSockReset(&ListenSock,1); /* server mode only */
 TCP_DataSockReset(&DataSock1,1);
 TCP_DataSockReset(&DataSock2,1);

/* Note: You can reset a whole data socket buffer by:
 TCP_DataSockReset(SockBuf,N); */

/* Connect server and/or client sockets */

/* Call send and receive functions from the basic library and/or
 I/O functions from the VIMOS library. */

/* Disconnect and close all sockets */
 TCP_Disconnect(&ListenSock); /* server mode only */
 TCP_Disconnect(&DataSock1);
 TCP_Disconnect(&DataSock2);

/* Close library */
 TCP_Close();
 return;
}

3.3. Connecting server sockets
Declare a listen socket and one or more data sockets. Call TCP_Listen to create a listen socket and
to start listening on the specified port for connection requests from remote servers. You can check for
and accept connection requests by TCP_AcceptConnection. In case of successful connection the
function creates a data socket, which further can be passed to the data transfer functions. The
function TCP_GetConnectionState returns non-zero value if the data socket is connected or 0
when not connected.

The next piece of code demonstrates the connection of one data socket as a server. The code
contains a wait connection loop, but you may skip the wait loop and put the connection code:

 TCP_AcceptConnection(...);

 TCP_GetConnectionState(...);

 in a custom loop with other code. Library and socket initialization is omitted for clarity (see “3.2.
Initialization”).

#include "tcp_lib.h"
#define CONN_TIME_OUT 9000 /* connection timeout in ms */
 int rc;

atto-Systems Ltd. 22 Mar 2005 Page 14 of 39

TCP library for camera and PC User's Guide

 TCP_SOCK ListenSock; /* listen socket */
 TCP_SOCK DataSock; /* data socket */
 unsigned long time; /* time in ms */

/* Create a listen socket and start listening on port 2000 */
 rc = TCP_Listen(&ListenSock,2000);
 if(rc != TCP_OK) goto error_label;

/* Wait connection loop */
 time = get_time();
 for(;;)
 {
 rc = TCP_AcceptConnection(&ListenSock,&DataSock,1);
 if(rc != TCP_OK) goto error_label;

 if(TCP_GetConnectionState(&DataSock)) break; /* connection OK */
 if(get_time() - time >= CONN_TIME_OUT)
 {
 rc = TCP_NO_CONNECTION_ERROR;
 goto error_label;
 }
 } /* for(;;) */

/* Call data-transfer functions with socket argument &DataSock */

3.4. Connecting client sockets
Declare one or more data sockets. Call TCP_Connect to create client data socket(s) and connect to
specified server(s). You should specify valid server IP addresses and ports. After successful
connection you can pass data sockets as arguments to data transfer functions.

The next code demonstrates connection of one client data socket. Library and socket initialization is
omitted for clarity (see “3.2. Initialization”).

#include "tcp_lib.h"
#define CONN_TIME_OUT 2000 /* connection wait time in ms */
#define SERVER_IP_ADDR "192.168.0.65" /* server IP address (camera) */
#define SERVER_PORT 2000 /* server listen port */
 int rc;
 TCP_SOCK DataSock; /* data socket */

/* Connect to a remote server */
 rc = TCP_Connect(&DataSock,SERVER_IP_ADDR,SERVER_PORT,CONN_TIME_OUT);
 if(rc != TCP_OK) goto error_label;

/* Call data-transfer functions with socket argument &DataSock */

ATTENTION. To achieve robust connection(s), start server applications before client
applications – i.e. the server programs should wait for connection requests from
clients. This is especially important for camera client programs connecting to
PCs. On some systems (Windows XP with LAN firewall enabled), the TCP_Connect
function may hang on waiting for connection if the server is not started.

atto-Systems Ltd. 22 Mar 2005 Page 15 of 39

TCP library for camera and PC User's Guide

3.5. Using multiple sockets
You can use multiple sockets for data transfer in server or client mode. You may use for example
different sockets for different types of data. Thus by receiving data on a given socket you may
determine what data is coming in.

Follow the connection scheme for each socket as described in the previous sections. Execute
TCP_Connect for each client socket or the couple of functions TCP_AcceptConnection and
TCP_GetConnectionState for each server socket. After successful connection, pass the sockets
as arguments to the data-transfer functions. The example programs SERVERM.C and CLIENTM.C
demonstrate how to work with multiple sockets. Please look at the included file CONN_MUL.C, which
actually connects multiple server and client sockets.

ATTENTION. Sequential client connection requests, issued from PC with identical IP
addresses and ports, may be received on camera in different order.

The functions TCP_AcceptMul and TCP_ConnectMul in the file CONN_MUL.C offer a solution of
the problem. After each acceptation, TCP_AcceptMul sends one byte via the connected server
socket. On each successful connection, TCP_ConnectMul waits for a byte via the connected client
socket before going to next connection request. Another method is to wait some time (no less than
400-500 ms) after each client request.

3.6. Transferring data
Once you have connected data socket(s) in client or server mode, you can call data transfer functions
from the basic library and/or the VIMOS library. Pointers to connected sockets should be passed as
arguments to the data transfer functions.

3.6.1. Basic data transfer functions

The data transfer functions from the basic library are byte or block oriented. Most of the “receive”
functions support timeouts. Below is given a brief description of the functions. Refer to the function
reference for more details:

Function Description

TCP_SendByte Send byte

TCP_RecvByte Receive byte, no wait

TCP_WaitByte Wait for byte with timeout

TCP_SendBlock Send block

TCP_RecvBlock Receive block with timeout

The code below demonstrates usage of basic data transfer functions with one socket. Library
initialization and socket connection are omitted for clarity (see previous sections).

#include "tcp_lib.h"
#define RECV_TIME_OUT 300 /* receive timeout in ms */
#define BUF_SIZE 8 /* I/O buffer size */
 int iret;
 unsigned char buf[BUF_SIZE]; /* I/O buffer */
 int byt; /* I/O byte */
 TCP_SOCK DataSock; /* data socket */

atto-Systems Ltd. 22 Mar 2005 Page 16 of 39

TCP library for camera and PC User's Guide

/* Send byte */
 iret = TCP_SendByte(&DataSock,byt);
 if(iret != 0) goto error_label;

/* Receive byte if available, no wait */
 byt = TCP_RecvByte(&DataSock);
 if(byt < 0) goto error_label; /* byte N/A or socket error */

/* Wait for byte with timeout */
 byt = TCP_WaitByte(&DataSock,RECV_TIME_OUT);
 if(byt < 0) goto error_label; /* byte N/A or socket error */

/* Send block */
 iret = TCP_SendBlock(&DataSock,buf,BUF_SIZE);
 if(iret != BUF_SIZE) goto error_label;

/* Receive block */
 iret = TCP_RecvBlock(&DataSock,buf,BUF_SIZE,RECV_TIME_OUT);
 if(iret != BUF_SIZE) goto error_label;

3.6.2. VIMOS I/O functions

The VIMOS I/O functions transfer data in special format, which complies with the VIMOS I/O tools.
Library initialization and socket connection are described in the preceding sections. The functions
work in couples – each send function transfers data to respective VIMOS receive tool or respective
receive function. All receive functions support timeouts. Refer to the function reference chapter for
more details.

Function Description

TCP_SendPtlist Send point-list

TCP_SendImage Send image

TCP_SendResult Send result

TCP_SendString Send string

TCP_SendBinary Send binary (no protocol, same as TCP_SendBlock)

TCP_RecvPtlist Receive point-list

TCP_RecvImage Receive image

TCP_RecvResult Receive result

TCP_RecvString Receive string

TCP_RecvBinary Receive binary (no protocol, same as TCP_RecvBlock)

See chapter “4. Examples” for example(s) with VIMOS I/O functions.

3.7. Copy protection
A registration file protects the TCP library on camera. Send the serial number of your VC20xxE
camera to the program vendor and you will receive a registration file with the name TCPKEY.MSF.
Load the file to camera flash. Now you will be able to execute camera programs, linked with the TCP
library TCP_CAM.LIB.

atto-Systems Ltd. 22 Mar 2005 Page 17 of 39

TCP library for camera and PC User's Guide

3.8. Compiling and linking programs with TCP library
This section describes how to compile and link demo and custom programs on camera and PC. The
PC demo programs are simple Windows console applications, executed in the command prompt
window (the DOS window).

ATTENTION. When compiling your code for camera, you should define the macro
_TI_CAMERA (see the batch file TCL.BAT). Camera programs need a registration
key.

3.8.1. Compiling and linking camera programs

Compile your code by the C/C++ compiler of the TI Code Composer Studio. Link the object modules
with the TCP library TCP_CAM.LIB. We recommend using the following batch file TCL.BAT
supposing the TI compiler and the VCRT development software are installed in c:\ti:

@echo off

cl6x %1.c -o3 -mi100000 -pdr -pdse225 -qq -d_TI_CAMERA
if ERRORLEVEL 1 goto end
lnk6x -q -s -u _c_int01 %1.obj -m %1.map -o %1.out -l tcp_cam.lib c:\ti\work\cc.cmd
if ERRORLEVEL 1 goto end

copy %1.out exec.out
c:\ti\util\econv %1
c:\ti\util\scvt
copy adsp.msf %1.msf
:end

ATTENTION. This batch file requires strict prototyping of all called functions.

Examples for compilation and linking of demo programs:
 tcl server
 tcl serverm

The batch file produces MSF files (SERVER.MSF, SERVERM.MSF), which should be loaded to
camera flash by a TCP terminal or by the VIMOS Simulator. Remember that TCP camera programs
need registration file (see “3.7. Copy protection”).

3.8.2. Compiling and linking PC programs

The suggested batch files create demo console applications by the C/C++ compiler of Microsoft®
Visual Studio 6.00 or higher in batch mode. Of course you may create Visual Studio project(s) for this
purpose and/or insert TCP code in arbitrary Win32 application, which uses graphical interface and
MFC. Note that the PC library TCP_PC.LIB does not use MFC.

To setup the C/C++ compiler in batch mode it may be necessary to run the batch file
VCVARS32.BAT, which is usually located in:
 C:\Program Files\Microsoft Visual Studio\Vc98\Bin

If you don’t have the necessary settings by default, you should run this file once after each opening of
a new command prompt window. This could be done by the batch file SET_VC.BAT supplied with the
library:
echo Setup Visual C/C++ compiler in batch mode
call c:\PROGRA~1\MICROS~3\Vc98\Bin\vcvars32.bat

You can compile and link the PC demo programs by the following batch file (see VCL.BAT):

atto-Systems Ltd. 22 Mar 2005 Page 18 of 39

TCP library for camera and PC User's Guide

echo Visual C/C++ compile and link
cl.exe /nologo /W3 /GX %1.c tcp_pc.lib wsock32.lib

If you create your own Visual Studio project(s), remember to link your code with the libraries
TCP_PC.LIB and WSOCK32.LIB.

atto-Systems Ltd. 22 Mar 2005 Page 19 of 39

TCP library for camera and PC User's Guide

4. Examples
This chapter describes the examples supplied with the library. You may compile and link the example
source files or use ready executable modules for camera (MSF files) and PC (EXE files).

ATTENTION. Remember that if you are going to rebuild and execute the camera
examples, you will need a registration file (see “3.7. Copy protection”). Upload the
registration file TCPKEY.MSF to camera before running your TCP camera program.

If you are going to use the ready camera MSF examples, you don’t need a
registration file.

The default camera’s IP address is 192.168.0.65. This is the default address, used in the respective
PC client executables. If you have camera with different IP address, you should specify IP address
when you start the PC demo programs, for example:

 client 192.168.0.66

4.1. Basic library example – client and server
These are the examples, described in the introduction chapter. The client program (both the source
file and the executable module) define camera’s IP address and therefore is designed to run on PC.
The server program should run on camera. If you want to switch the target platforms, you should
modify the source code of the client program (server IP address) and recompile the examples (the
source code is portable).

File Description

SERVER.C Server demo - source code for camera

CLIENT.C Client demo - source code for PC

SERVER.MSF Server demo - executable module for camera

CLIENT.EXE Client demo - executable module for PC

Test execution:
Load the registration file TCPKEY.MSF to camera (not needed for the ready MSF demo files). Load
SERVER.MSF to camera and start the program server from a TCP/IP terminal. The server program
will wait maximum 9 seconds for connection. Start no later than 9 seconds the PC program client
in a command prompt window. If you have changed the default IP address of the camera, you should
start the client program by “client new_ip_address”, where the new IP address is in string format
xxx.xxx.xxx.xxx.
You should receive a data dump of 0,1,…,7 and return code RC=0.

4.2. Basic library example – client and server with multiple sockets
The following examples demonstrate the simultaneous usage of several sockets. Here the code is not
portable – the server program is created explicitly for camera. The client is a PC program – it is a
simple TCP terminal, which may be used to enter camera shell commands like dir. The terminal
program is used to start the camera server program and to get camera response (if any) from the
Telnet port 23.

File Description

SERVERM.C Server demo with multiple sockets - source code for camera

atto-Systems Ltd. 22 Mar 2005 Page 20 of 39

TCP library for camera and PC User's Guide

CLIENTM.C Client demo with multiple sockets – source code for PC

CONN_MUL.C Server/client connection functions for multiple sockets – portable code. This
file is included in the files SERVERM.C and CLIENTM.C.

SERVERM.MSF Server demo with multiple sockets - executable module for camera

CLIENTM.EXE Client demo with multiple sockets - executable module for PC

Test execution:
Load the registration file TCPKEY.MSF to camera (not needed for the ready MSF demo files). Load
SERVERM.MSF to camera (don’t start it, this is done by the PC program) and exit the terminal. Start
the program clientm in a command prompt window. If you have changed the default IP address of
the camera, you should start the client program by “clientm new_ip_address”, where the new IP
address is in string format xxx.xxx.xxx.xxx.
Press Enter several times to see the camera shell prompt '$'. Press F1 to start the test. This
command starts the camera program serverm and then executes PC client connection code. The
camera and PC will connect exchange data through 4 sockets. You must receive the following
messages in an endless loop:
 PC: --- Iter = xxx ---
 PC: isock=0: Send/recv block OK
 PC: isock=1: Send/recv block OK
 PC: isock=2: Send/recv block OK
 PC: isock=3: Send/recv block OK

Press Q to disconnect camera or any other key to disconnect PC and return to the camera shell.
Depending on the disconnection type, the PC or the camera will display an error message in the
following format:
 PC:
 Cam:

Press Esc or F10 to exit the PC program or press F1 to restart the test.

ATTENTION. You can press F1 to restart the test when there are no pending shell
commands like $xx…x - you should see the prompt character only. We recommend
pressing Enter before pressing F1.

4.3. VIMOS library example
The following examples demonstrate how to transfer data between a stand alone program and the
VIMOS system. VDEMO.C contains portable code for camera and PC, which executes functions from
the VIMOS TCP library. It connects in client mode to the VIMOS user-program (server).

You can run a ready PC executable module VDEMO.EXE, compiled from VDEMO.C. VIMOS should
be started with VDEMO.AEF before you start VTDEMO on PC.

INFORMATION. You can swap the platforms by recompilation of VDEMO.C for
camera. The VIMOS user-program should be started in Simulator. Remember that you
should change the IP address in VDEMO.AEF (the create server tool).

It is also possible to connect two PCs or two cameras – one should be running VIMOS
and the other - VDEMO.

File Description

VDEMO.C Source code of client stand-alone program (portable)

VDEMO.AEF VIMOS server user-program with I/O tools.

VDEMO.EXE PC executable module created from VDEMO.C, which executes I/O

atto-Systems Ltd. 22 Mar 2005 Page 21 of 39

TCP library for camera and PC User's Guide

functions from the VIMOS TCP library.

Test execution:

Follow the next instructions to run the stand-alone program VDEMO on PC and to communicate with
VIMOS on the camera. You can use the ready test VDEMO.EXE:

• Open VDEMO.AEF in the Editor. Set your computer’s IP address in the “Create server device”
tool. Export the program to the Simulator and save it as file up0.vm.

• Load up0.vm to camera.

• Start VIMOS on camera with the program up0.vm.

• Open a command-prompt window and start VDEMO on PC. If you have changed the default
camera IP address 192.168.0.65, you should start the program by “vdemo
new_ip_address”, where the new IP address is in string format xxx.xxx.xxx.xxx.

You should receive in endless loop OK messages for the tested I/O tools. Press a key to disconnect
and terminate the VDEMO program. You can restart VDEMO after a little wait time - when the “Create
server device” tool result, shown on the camera monitor, receives a nonzero error value.

INFORMATION. This example was created using VIMOS version 2.61. Since VIMOS
is constantly evolving it is possible that this example requires changes to be made in
order to run it under newer VIMOS versions. If you have downloaded a newer VIMOS
version and this example is not running, please send us and e-mail.

Alternatively, you can download VIMOS v2.61 here:

atto-Systems Ltd. 22 Mar 2005 Page 22 of 39

mailto:info@atto-Systems.com?subject=TCP%20lib%20example%20not%20working%20with%20VIMOS%20v.
http://www.atto-systems.com/VIMOS_v261b/VIMOS-2.61b-full-win.exe

TCP library for camera and PC User's Guide

5. Basic library function reference
This chapter presents detailed information about the functions in the basic TCP library.

TCP_Init (Initialize TCP library)
Prototype:
int TCP_Init ()

Description:

The function initializes the TCP library before connecting in server or client mode. This function should
be called before any other library function.

Parameters:

None

Return code:
TCP_OK Success

TCP_AFXSOCKETINIT_ERROR AfxSocketInit failed (PC only)

TCP_Close (Close TCP library)
Prototype:
void TCP_Close ()

Description:

The function closes the TCP library. This function should be called when the I/O transfer is done and
all sockets are disconnected.

Parameters:

None

Return code:

None

TCP_DataSockReset (Reset sockets)
Prototype:
void (TCP_SOCK *data_sock, int data_sock_cnt)

Description:

The function resets a socket buffer. It should be called once after TCP_Init and before any
connection and I/O transfer functions. Note that TCP_Disconnect resets the disconnected socket
and you may use the socket for new connection without calling TCP_DataSockReset.

Parameters:
data_sock Input/output socket buffer

data_sock_cnt Input number of sockets in the data_sock buffer

atto-Systems Ltd. 22 Mar 2005 Page 23 of 39

TCP library for camera and PC User's Guide

Return code:

None

TCP_Listen (Start listening for client requests)
Prototype:
int TCP_Listen (TCP_SOCK *list_sock, int port)

Description:

The function creates a listen socket and starts listening on the specified port for a connection request
from a TCP client. Connection requests are accepted by the function TCP_AcceptConnection.

ATTENTION. Disconnect the created listen socket by TCP_Disconnect when the
I/O transfer is done.

Parameters:
list_sock Input/output listen socket

port Input listen port (0 = default listen port 2000)

Return code:
TCP_OK Success

TCP_SOCK_CREATE_ERROR Listen socket create failed

TCP_STREAM_BIND_ERROR Stream bind failed

TCP_LISTEN_FAIL_ERROR Listen failed

TCP_AcceptConnection (Accept connection requests)
Prototype:
int TCP_AcceptConnection (TCP_SOCK *listen_sock, TCP_SOCK *data_sock,
 int data_sock_cnt)

Description:

The function accepts connection requests from remote clients on the input socket listen_sock,
which should be previously initialized by TCP_Listen. It setups the input/output data socket buffer
data_sock by storing parameters of connected sockets into unconnected (non-initialized) buffer
items. The function must be called regularly to check for new connections and/or to restore broken
connections. To achieve exact correspondence between connected server and client sockets, we
recommend calling the function multiple times with data_sock_cnt = 1.

ATTENTION. Several client connection requests, issued from PC to camera with
identical IP addresses and ports, may be received on the camera in different order –
see the example with multiple sockets.

The connected data socket(s) can be passed as arguments to the data transfer functions. Sockets
connected by this function are called server sockets.

ATTENTION. All connected sockets should be disconnected by TCP_Disconnect
when the I/O transfer is done. Sockets are disconnected automatically if the
connection is broken.

Parameters:

atto-Systems Ltd. 22 Mar 2005 Page 24 of 39

TCP library for camera and PC User's Guide

listen_sock Input listen socket

data_sock Input/output data socket buffer

data_sock_cnt Input number of sockets in the data_sock buffer

Return code:
TCP_OK Success

Other Accept connection failed

TCP_GetConnectionState (Get socket connection state)
Prototype:
int TCP_GetConnectionState (TCP_SOCK *data_sock)

Description:

The function returns the connection state of the input data socket. You may check regularly the
connection state of a given socket. If the connection is broken, you can reconnect the socket in server
mode by TCP_AcceptConnection or in client mode by TCP_Connect.

Parameters:
data_sock Input data socket

Return code:
0 No connection

1 Connection OK – you

TCP_Connect (Connect client socket)
Prototype:
int TCP_Connect (TCP_SOCK *sock, char *ip_addr, int port, int wait_time)

Description:

The function creates and connects a to a remote server, specified by ip_addr and port. The
parameter wait_time specifies connection timeout.

ATTENTION. If a respective server has not been started on some systems
(Windows XP with LAN firewall enabled), this function may hang on camera by
waiting for connection instead of returning control after the timeout interval. We
recommend starting a server application on a remote platform before connecting a
client socket.

The connected data socket can be passed as argument to the data transfer functions. Sockets
connected by this function are called client sockets.

ATTENTION. All connected sockets should be disconnected by TCP_Disconnect
when the I/O transfer is done. Sockets are disconnected automatically if the
connection is broken.

Parameters:
sock Input/output socket

ip_addr Input string with IP address of remote server (NULL specifies
default VC20xxE IP address "192.168.0.65")

port Input port (0 specifies default camera shell port 23)

atto-Systems Ltd. 22 Mar 2005 Page 25 of 39

TCP library for camera and PC User's Guide

wait_time Input connection timeout in ms

Return code:
TCP_OK Success

TCP_SOCKET_CREATE_ERROR Socket create failed

TCP_CONNECT_TIMEOUT_ERROR Connection timeout error

TCP_INVALID_IP_ERROR Invalid IP address

TCP_CONNECT_FAIL_ERROR Connection failed – probably no remote server

TCP_Disconnect (Disconnect socket)
Prototype:
void TCP_Disconnect (TCP_SOCK *sock)

Description:

The function disconnects and closes the specified socket.

ATTENTION. Use this function to close all connected listen and data sockets.
Remember that functions which create sockets (TCP_Listen,
TCP_AccepConnection and TCP_Connect) allocate memory. The closing of a
socket frees this memory.

Parameters:
sock Input/output socket

Return code:

None

TCP_SendByte (Send byte)
Prototype:
int TCP_SendByte (TCP_SOCK *sock, int byt)

Description:

The function sends a byte on the specified socket. The socket must be previously connected in server
or client mode.

Parameters:
sock Input socket

byt Input byte to send

Return code:
0 Success

TCP_SEND_BYTE_ERROR Send failed (socket error)

TCP_RecvByte (Receive byte)
Prototype:
int TCP_RecvByte (TCP_SOCK *sock)

Description:

atto-Systems Ltd. 22 Mar 2005 Page 26 of 39

TCP library for camera and PC User's Guide

The function receives a byte (if available) from the specified socket. The socket must be previously
connected in server or client mode.

Parameters:
sock Input socket

Return code:
>= 0 Received byte (success)

-1 Byte not available or socket error

TCP_WaitByte (Wait for byte)
Prototype:
int TCP_RecvByte (TCP_SOCK *sock)

Description:

The function waits to receive a byte from the specified socket. The socket must be previously
connected in server or client mode.

Parameters:
sock Input socket

wait Input wait time in ms:

 0 : wait forever

 >0 : wait time in milliseconds

Return code:
>= 0 Received byte (success)

-1 Byte not available (timeout or socket error)

TCP_SendBlock (Send block)
Prototype:
int TCP_SendBlock (TCP_SOCK *sock, unsigned char *buf, int cnt)

Description:

The function sends a block of bytes on the specified socket and waits until all block bytes are sent.
The socket must be previously connected in server or client mode.

Parameters:
sock Input socket

buf Input data buffer to send

cnt Input number of bytes to send (size of buf)

Return code:
>=0 Number of sent bytes (success)

TCP_SEND_ERROR Send error

TCP_NO_CONNECTION_ERROR No connection error

atto-Systems Ltd. 22 Mar 2005 Page 27 of 39

TCP library for camera and PC User's Guide

TCP_RecvBlock (Receive block)
Prototype:
int TCP_RecvBlock (TCP_SOCK *sock, unsigned char *buf, int cnt, int wait)

Description:

The function receives a block of bytes from the specified socket and stores the received data into buf.
In case of timeout, the function returns the number of bytes received so far, which is less than cnt.
The socket must be previously connected in server or client mode.

Parameters:
sock Input socket

buf Output data buffer

cnt Input number of bytes to receive (size of buf)

wait Input wait time in ms:

 0 : wait forever

 >0 : wait time in milliseconds

Return code:
>=0 Number of received bytes (RC < cnt : timeout error)

TCP_RECV_ERROR Receive error

TCP_NO_CONNECTION_ERROR No connection error

TCP_SendCmd (Send command)
Prototype:
int TCP_SendCmd (TCP_SOCK *sock, char *cmd, int mode)

Description:

The function sends a 0-terminated command string on specified socket and optionally reads echo
bytes from the socket. The 0-terminating char is not sent – it is replaced by a new line character 0x0A.
Usually this function is used to send commands to the camera shell via the Telnet port 23.

Parameters:
sock Input socket

cmd Input command string

mode Input mode of operation:

 0 : don't read command echo

 1 : read command echo

Return code:
0 Success

Other Socket error

TCP_ReadEcho (Read camera echo)
Prototype:

atto-Systems Ltd. 22 Mar 2005 Page 28 of 39

TCP library for camera and PC User's Guide

void TCP_ReadEcho (TCP_SOCK *sock, int dump, unsigned int wait)

Description:

The function reads (and optionally dumps) all bytes received from the specified socket, until a timeout
of wait ms occurs. Usually this function is used to read camera shell response on the Telnet port 23.

Parameters:
sock Input socket

dump Input dump flag:

 0 : no dump

 1 : dump received chars

wait Input read timeout in ms

Return code:

None

get_time (Get system time)
Prototype:
unsigned long get_time ()

Description:

The function returns the system time in milliseconds. The time grows from 0 upwards.

Parameters:

None

Return code:

System time in ms

atto-Systems Ltd. 22 Mar 2005 Page 29 of 39

TCP library for camera and PC User's Guide

6. VIMOS library function reference
This chapter presents detailed information about the functions in the VIMOS TCP library. Here the
functions transfer data in a format compatible with the VIMOS I/O tools when working in TCP mode
(with TCP I/O device). The formats of the various send/receive data blocks are described in
TCP_IO.H.

TCP_SendPtlist (Send point-list)
Prototype:
int TCP_SendPtlist (TCP_SOCK *sock, unsigned char *ptl_buf,

 int ptl_len, int wait)

Description:

The function sends a point-list on the specified socket. The receiver of the point-list should be a
"Receive point-list" tool. The format of the point-list buffer ptl_buf is described in TCP_IO.H. The
calling function is responsible to fill correct buffer data before calling this function.

Parameters:
sock Input socket

ptl_buf Input buffer with point-list items in format:

 item_0, item_1, ...

Each item is a PTL_ITEM structure (see TCP_IO.H)

ptl_len Input length of the point-list buffer in number of items. The actual
size of ptl_buf in bytes is:

 ptl_len * sizeof(PTL_ITEM)

wait Input wait time:

 0 = don't wait for end of transfer

 >0 = wait wait ms for reply, sent back from receiver on the end

 of the transfer

Return code:
TCP_OK Success

TCP_SEND_PTLIST_HDR_ERROR Send header error

TCP_SEND_PTLIST_DATA_ERROR Send data error

TCP_SEND_PTLIST_REPLY_ERROR Invalid reply byte received (wait > 0)

TCP_SEND_PTLIST_TIMEOUT Timeout error when waiting for reply from the receiver tool
(wait > 0)

TCP_RecvPtlist (Receive point-list)
Prototype:
int TCP_RecvPtlist (TCP_SOCK *sock, unsigned char *ptl_buf,

 int *ptl_len, int wait)

atto-Systems Ltd. 22 Mar 2005 Page 30 of 39

TCP library for camera and PC User's Guide

Description:

The function receives a point-list from specified socket. The sender of the point-list should be a "Send
point-list" tool. The format of the point-list block is described in TCP_IO.H.

The function saves the received point-list into the output buffer ptl_buf. The buffer should be
allocated by the calling function and must be large enough to hold the longest point-list, which may be
received. If not, the function returns with error code TCP_RECV_PTLIST_BUF_OVF.

Parameters:
sock Input socket

ptl_buf Output buffer with point-list items in format:

 item_0, item_1, ...

Each item is a PTL_ITEM structure (see TCP_IO.H)

ptl_len Input/output length of the point-list buffer in number of items:

 On input : max number of items in ptl_buf

 On output : actual number of items received in ptl_buf

Note: The actual size of ptl_buf in bytes is:

 Ptl_len * sizeof(PTL_ITEM)

wait Input wait time:

 0 = wait forever until a point-list is received

 >0 = wait maximum wait ms for point-list before a timeout

 error

Return code:
TCP_OK Success

TCP_RECV_PTLIST_NO_DATA No data present from a send point-list tool

TCP_RECV_PTLIST_BUF_OVF Point-list buffer overflow

TCP_RECV_PTLIST_TIMEOUT Timeout when receiving point-list

Other Socket error(s)

TCP_SendImage (Send image)
Prototype:
int TCP_SendImage (TCP_SOCK *sock, IMAGE *img, int type, int qual,

 int wait)

Description:

The function sends an image on the specified socket. The receiver of the image should be a "Receive
image" tool. The format of the image block is described in TCP_IO.H.

Parameters:
sock Input socket

img Input image in IMAGE format (defined in TCP_IO.H)

type Input type of image block to send:

 0 = Bitmap image

 1 = Convert img into JPEG file and send JPEG file.

atto-Systems Ltd. 22 Mar 2005 Page 31 of 39

TCP library for camera and PC User's Guide

Note: Currently the JPEG type is not supported.
qual Input JPEG quality in the range [1,100], used when type=1. Lower

qual value means lower JPEG quality and smaller JPEG file.

wait Input wait time:

 0 = don't wait for end of transfer

 >0 = wait wait ms for reply, sent back from receiver on the end

 of the transfer

ATTENTION. The wait parameter can be used for synchronization and test
purposes. Remember that on camera the "Send image" tool returns when data is
copied into a system VCRT buffer but before the data is received by the "Receive
image" tool. When a next "Send image" tool is executed, it will wait until the previous
transfer is over. Thus you may receive quite different tool execution times.

Return code:
TCP_OK Success

TCP_SEND_IMAGE_HDR_ERROR Send header error

TCP_SEND_IMAGE_DATA_ERROR Send data error

TCP_SEND_IMAGE_TIMEOUT Timeout when waiting for reply from the receiver tool
(wait>0)

TCP_SEND_IMAGE_REPLY_ERROR Invalid reply byte received (wait>0)

TCP_RecvImage (Receive image)
Prototype:
int TCP_RecvImage (TCP_SOCK *sock, IMAGE *img, int img_buf_size,

 int wait, int *type, int *qual)

Description:

The function receives an image from the specified socket. The sender of the image should be a "Send
image" tool. The format of the image block is described in TCP_IO.H.

The function saves the received image and its dimensions into the output image img (an IMAGE
structure). If the received image is a JPEG file, it is stored into the image memory buffer img_buf
again, but the other IMAGE members are not used. The image buffer should be allocated by the calling
function and must be large enough to hold the received image. The maximum size of the image buffer
is specified by the img_buf_size argument. In case of buffer overflow, the function returns with error
TCP_RECV_IMAGE_BUF_OVF.

ATTENTION. Remember that on input img must have valid buffer pointer, stored by
the calling function in img_buf

Currently the "Send image" and the "Receive image" tools do not support image
transfer in JPEG format.

Parameters:
sock Input socket

img Input/output image in IMAGE format (defined in TCP_IO.H).

On input: The image buffer img_buf must be allocated by the
calling function.

atto-Systems Ltd. 22 Mar 2005 Page 32 of 39

TCP library for camera and PC User's Guide

On output: The image data is stored into img_buf. The image
parameters are stored into dx, dy and pitch. If type=1 the image
buffer receives a JPEG file (currently not supported).

img_buf_size Input size of the image buffer img_buf. The function checks this
size to decide whether the received image can be stored in the
image buffer.

wait Input wait time:

 0 = wait forever until image is received

 >0 = wait maximum wait ms for image before a timeout error

type Output type of received image:

 0 = Bitmap image

 1 = JPEG file (currently not supported)

qual Output JPEG quality in the range [1,100], received when type=1.
Lower qual value means lower JPEG quality and smaller JPEG file
(currently not supported).

Return code:
TCP_OK Success

TCP_RECV_IMAGE_NO_DATA No data present from a send image tool

TCP_RECV_IMAGE_BUF_OVF Image buffer overflow

TCP_RECV_IMAGE_TIMEOUT Timeout when receiving image

Other Socket error(s)

TCP_SendResult (Send result)
Prototype:
int TCP_SendResult (TCP_SOCK *sock, void *res_buf, int type,

 int data_fmt, int wait)

Description:

The function sends a result on the specified socket. The receiver of the result should be a "Receive
result" tool. The format of the result block is described in TCP_IO.H.

Parameters:
sock Input socket

res_buf Input result buffer in format specified by type.

type Input result type (see TCP_IO.H):

 0 : float (size = 4)

 1 : point PTL_POINT (size = 8)

 2 : 16-bit integer TCP_INT16 (size = 2)

 3 : 32-bit integer TCP_INT32 (size = 4)

data_fmt Input format of sent data bytes:

 0 : hex

 1 : binary (default)

 2 : ASCII

atto-Systems Ltd. 22 Mar 2005 Page 33 of 39

TCP library for camera and PC User's Guide

 3 : ASCII prompt

Note: Currently data_fmt==1(binary) is supported only !

wait Input wait time:

 0 = don't wait for end of transfer

 >0 = wait wait ms for reply, sent back from receiver on the end

 of the transfer

Return code:
TCP_OK Success

TCP_SEND_RESULT_HDR_ERROR Send header error

TCP_SEND_RESULT_DATA_ERROR Send data error

TCP_SEND_RESULT_REPLY_ERROR Invalid reply byte received (wait > 0)

TCP_SEND_RESULT_TIMEOUT Timeout error when waiting for reply from the receiver tool
(wait > 0)

TCP_RecvResult (Receive result)
Prototype:
int TCP_RecvResult (TCP_SOCK *sock, void *res_buf, int *data_size,

 int *type, int wait)

Description:

The function receives a result from the specified socket. The sender of the result should be a "Send
result" tool. The format of the result block is described in TCP_IO.H.

The function saves the received result in the output buffer res_buf. The buffer should be allocated by
the calling function and must be large enough to hold the longest result, which may be received. If not,
the function returns with error code TCP_RECV_RESULT_BUF_OVF.

Parameters:
sock Input socket

res_buf Output result buffer in format specified by type. Should have
minimum size of 8 bytes to receive all result types.

data_size Input/output size of result buffer:

 On input : maximum res_buf size

 On output : actual number of bytes stored in res_buf

type Output result type (see TCP_IO.H):

 0 : float (data_size = 4)

 1 : point PTL_POINT (data_size = 8)

 2 : 16-bit integer TCP_INT16 (data_size = 2)

 3 : 32-bit integer TCP_INT32 (data_size = 4)

wait Input wait time:

 0 = wait forever until a result is received

 >0 = wait maximum wait ms for result before a timeout error

Return code:

atto-Systems Ltd. 22 Mar 2005 Page 34 of 39

TCP library for camera and PC User's Guide

TCP_OK Success

TCP_RECV_RESULT_NO_DATA No data present from a send result tool

TCP_RECV_RESULT_BUF_OVF Result buffer overflow

TCP_RECV_RESULT_TIMEOUT Timeout when receiving result

Other Socket error(s)

TCP_SendString (Send string)
Prototype:
int TCP_SendString (TCP_SOCK *sock, char *str_buf, int str_size,

 int wait)

Description:

The function sends a string on the specified socket. The receiver of the string should be a "Receive
string" tool. The format of the string block is described in TCP_IO.H.

Parameters:
sock Input socket

str_buf Input string buffer.

str_size Input str_buf size (# of bytes to send)

wait Input wait time:

 0 = don't wait for end of transfer

 >0 = wait wait ms for reply, sent back from receiver on end of

 transfer

Return code:
TCP_OK Success

TCP_SEND_STRING_HDR_ERROR Send header error

TCP_SEND_STRING_DATA_ERROR Send data error

TCP_SEND_STRING_REPLY_ERROR Invalid reply byte received (wait > 0)

TCP_SEND_STRING_TIMEOUT Timeout error when waiting for reply from the receiver tool
(wait > 0)

TCP_RecvString (Receive string)
Prototype:
int TCP_RecvString (TCP_SOCK *sock, char *str_buf, int *str_size,

 int wait)

Description:

The function receives a string from the specified socket. The sender of the string should be a "Send
string" tool. The format of the string block is described in TCP_IO.H.

The function saves the received string in the output buffer str_buf. The buffer should be allocated by
the calling function and must be large enough to hold the longest string, which may be received. If not,
the function returns with error code TCP_RECV_STRING_BUF_OVF.

Parameters:

atto-Systems Ltd. 22 Mar 2005 Page 35 of 39

TCP library for camera and PC User's Guide

sock Input socket

str_buf Output string buffer.

str_size Input/output str_buf size:

On input : maximum str_buf size

On output : actual number of bytes stored in str_buf (a
terminating byte is not stored in the string buffer)

wait Input wait time:

 0 = wait forever until a string is received

 >0 = wait maximum wait ms for string before a timeout error

Return code:
TCP_OK Success

TCP_RECV_STRING_NO_DATA No data present from a send string tool

TCP_RECV_STRING_BUF_OVF String buffer overflow

TCP_RECV_STRING_TIMEOUT Timeout when receiving string

Other Socket error(s)

TCP_SendBinary (Send binary)
Prototype:
int TCP_SendBinary (TCP_SOCK *sock, unsigned char *buf, int cnt)

Description:

The function sends a block of bytes on the specified socket and waits until all block bytes are sent.
The receiver of the data should be a "Receive binary" tool. The function does not implement any
handshake or I/O protocol.

Parameters:
sock Input socket

buf Input data buffer to send

cnt Input number of bytes to send (size of buf)

Return code:
>=0 Number of sent bytes (success)

TCP_SEND_ERROR Send error

TCP_NO_CONNECTION_ERROR No connection error

TCP_RecvBinary (Receive binary)
Prototype:
int TCP_RecvBinary (TCP_SOCK *sock, unsigned char *buf, int cnt,

 int wait)

Description:

The function receives a block of bytes from the specified socket and stores the received data into buf.
In case of timeout, the function returns the number of bytes received so far, which is less than cnt.

atto-Systems Ltd. 22 Mar 2005 Page 36 of 39

TCP library for camera and PC User's Guide

The sender of the data should be a "Send binary" tool. The function does not implement any
handshake or I/O protocol.

Parameters:
sock Input socket

buf Output data buffer

cnt Input number of bytes to receive (size of buf)

wait Input wait time in ms:

 0 : wait forever

 >0 : wait time in milliseconds

Return code:
>=0 Number of received bytes (RC < cnt : timeout error)

TCP_RECV_ERROR Receive error

TCP_NO_CONNECTION_ERROR No connection error

atto-Systems Ltd. 22 Mar 2005 Page 37 of 39

TCP library for camera and PC User's Guide

7. Error codes
The basic TCP functions return the following error codes, defined by macros in TCP_LIB.H:

Code Macro Description

0 TCP_OK Success

-2101 TCP_STREAM_BIND_ERROR Stream bind error

-2104 TCP_SOCKET_CREATE_ERROR Socket create error

-2105 TCP_LISTEN_FAIL_ERROR Listen fail error

-2106 TCP_ACCEPT_FAIL_ERROR Accept error

-2107 TCP_NO_CONNECTION_ERROR No connection error

-2108 TCP_INVALID_IP_ERROR Invalid IP address

-2109 TCP_CONNECT_FAIL_ERROR Connect failed

-2110 TCP_NO_DATA_SOCKETS_ERROR No free data sockets

-2111 TCP_SEND_BYTE_ERROR Send byte error

-2112 TCP_RECV_BYTE_ERROR Receive byte error

-2113 TCP_SEND_ERROR Send error

-2114 TCP_RECV_ERROR Receive error

-2115 TCP_SEND_BLOCK_ERROR Send block error

-2116 TCP_RECV_BLOCK_ERROR Receive block error

-2117 TCP_GETSOCKNAME_ERROR getsockname() error

-2118 TCP_GETPEERNAME_ERROR getpeername() error

-2130 TCP_COPY_PROT_ERROR Copy protection error

The VIMOS TCP functions return the following error codes, defined by macros in TCP_IO.H:

Code Macro Description

2200 TCP_NO_MEMORY Memory allocation error

2210 TCP_SEND_IMAGE_HDR_ERROR Send image - header error

2211 TCP_SEND_IMAGE_DATA_ERROR Send image - data error

2212 TCP_SEND_IMAGE_REPLY_ERROR Send image - reply error

2213 TCP_SEND_IMAGE_TIMEOUT Send image - wait timeout

2214 TCP_SEND_PTLIST_HDR_ERROR Send point-list - header error

2215 TCP_SEND_PTLIST_DATA_ERROR Send point-list - data error

2216 TCP_SEND_PTLIST_REPLY_ERROR Send point-list - reply error

2217 TCP_SEND_PTLIST_TIMEOUT Send point-list - wait timeout

2218 TCP_SEND_RESULT_HDR_ERROR Send result - header error

2219 TCP_SEND_RESULT_DATA_ERROR Send result - data error

atto-Systems Ltd. 22 Mar 2005 Page 38 of 39

TCP library for camera and PC User's Guide

2220 TCP_SEND_RESULT_REPLY_ERROR Send result - reply error

2221 TCP_SEND_RESULT_TIMEOUT Send result - wait timeout

2222 TCP_SEND_STRING_HDR_ERROR Send string - header error

2223 TCP_SEND_STRING_DATA_ERROR Send string - data error

2224 TCP_SEND_STRING_REPLY_ERROR Send string - reply error

2225 TCP_SEND_STRING_TIMEOUT Send string - wait timeout

2310 TCP_RECV_IMAGE_NO_DATA Receive image - no data

2311 TCP_RECV_IMAGE_BUF_OVF Receive image - buffer overflow

2312 TCP_RECV_IMAGE_TIMEOUT Receive image - timeout

2313 TCP_RECV_PTLIST_NO_DATA Receive point-list - no data

2314 TCP_RECV_PTLIST_BUF_OVF Receive point-list - buffer overflow

2315 TCP_RECV_PTLIST_TIMEOUT Receive point-list - timeout

2316 TCP_RECV_RESULT_NO_DATA Receive result - no data

2317 TCP_RECV_RESULT_BUF_OVF Receive result - buffer overflow

2318 TCP_RECV_RESULT_TIMEOUT Receive result - timeout

2319 TCP_RECV_STRING_NO_DATA Receive string - no data

2320 TCP_RECV_STRING_BUF_OVF Receive string - buffer overflow

2321 TCP_RECV_STRING_TIMEOUT Receive string - timeout

atto-Systems Ltd. 22 Mar 2005 Page 39 of 39

	Introduction
	Why a new library?
	Simple examples
	Server example
	Client example

	Resources
	Sockets
	Socket options
	Connection modes
	Multiple data sockets
	Memory requirements

	Usage
	Header files
	Initialization
	Connecting server sockets
	Connecting client sockets
	Using multiple sockets
	Transferring data
	Basic data transfer functions
	VIMOS I/O functions

	Copy protection
	Compiling and linking programs with TCP library
	Compiling and linking camera programs
	Compiling and linking PC programs

	Examples
	Basic library example – client and server
	Basic library example – client and server with multiple sock
	VIMOS library example

	Basic library function reference
	TCP_Init (Initialize TCP library)
	TCP_Close (Close TCP library)
	TCP_DataSockReset (Reset sockets)
	TCP_Listen (Start listening for client requests)
	TCP_AcceptConnection (Accept connection requests)
	TCP_GetConnectionState (Get socket connection state)
	TCP_Connect (Connect client socket)
	TCP_Disconnect (Disconnect socket)
	TCP_SendByte (Send byte)
	TCP_RecvByte (Receive byte)
	TCP_WaitByte (Wait for byte)
	TCP_SendBlock (Send block)
	TCP_RecvBlock (Receive block)
	TCP_SendCmd (Send command)
	TCP_ReadEcho (Read camera echo)
	get_time (Get system time)

	VIMOS library function reference
	TCP_SendPtlist (Send point-list)
	TCP_RecvPtlist (Receive point-list)
	TCP_SendImage (Send image)
	TCP_RecvImage (Receive image)
	TCP_SendResult (Send result)
	TCP_RecvResult (Receive result)
	TCP_SendString (Send string)
	TCP_RecvString (Receive string)
	TCP_SendBinary (Send binary)
	TCP_RecvBinary (Receive binary)

	Error codes

